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Dense suspensions of small strongly interacting particles are complex systems that are rarely understood on
the microscopic level. We investigate properties of dense suspensions and sediments of small spherical Al2O3

particles in a shear cell by means of a combined molecular-dynamics and stochastic rotation dynamics simu-
lation. We study structuring effects and the dependence of the suspension’s viscosity on the shear rate and shear
thinning for systems of varying salt concentration and pH value. To show the agreement of our results with
experimental data, the relation between the bulk pH value and surface charge of spherical colloidal particles is
modeled by Debye-Hückel theory in conjunction with a 2 pK charge regulation model.
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I. INTRODUCTION

We simulate colloids of silt particles, for which in many
cases the attractive Van der Waals forces are relevant. These
colloids are sometimes called “peloids” �Greek: claylike�. In
contrast to clays consisting of thin platelets �1�, our particles
are in first approximation spherical particles. For real clays,
the particle shape and their orientation is of relevance �2–6�.
For silt particles, on the other hand, the description is less
complex. However, due to the particle size of micrometers
and below, the interplay of diffusion, electrostatic repulsion,
van der Waals attraction, and hydrodynamics still renders the
suspension a very complex system. Colloid science tries to
investigate the properties of such suspensions, and there is a
vast amount of literature on this subject �7–11�. Colloids in
general have various applications ranging from food industry
over paintings and cosmetic products to applications in pho-
tographic processes. Particles with well defined properties
can be used to investigate general properties of soft con-
densed matter like gelation or crystallization on a larger
length scale than on the atomic level. Especially attractive
interactions �depletion forces as well as van der Waals attrac-
tion� have attracted attention in the recent years �12–16�. In
soil mechanics, real samples, e.g., of sediments, can be less
characterized and therefore it is more difficult to gain a mi-
croscopic picture from which general properties can be de-
rived. Therefore, we have chosen a synthetic Al2O3 powder
suspended in water as a model system for silt. The particle
diameter is 0.37 �m.

Al2O3 is not only a cheap testing material for investiga-
tions related to soil mechanics, but it is also an important
material for ceramics. In process engineering, one of the ba-
sic questions is how to obtain components of a predefined
shape. Wet processing of suspensions, followed by a sinter
process, is a common practice here �17�. Nevertheless, to
optimize the production process and to improve the homoge-
neity and strength of the fabricated workpiece, one has to
understand the complex rheological behavior of the suspen-

sion and its relation to the microscopic structure. This knowl-
edge in turn can be applied to soil mechanics. Shear thinning
as observed in our simulations and experiments is an impor-
tant mechanism for the dynamics of landslides, making them
more dangerous.

In this paper, we present our simulation results of sheared
suspensions of Al2O3 particles. The overall behavior is
strongly determined by the effective interaction potential be-
tween the particles in the suspension. The potentials can be
related to experimental conditions within Debye-Hückel
theory, and thus we can compare our simulation results to
experimental data. In contrast to our approach of a direct
comparison to experimental data, in the literature simulation
results are often compared to analytical calculations.

Many different simulation methods have been developed
and applied to colloidal suspensions: Stokesian dynamics
�SD� �18–20�, accelerated Stokesian dynamics �ASD�
�21,22�, pair drag simulations �23�, Brownian dynamics
�BD� �24,25�, Lattice-Boltzmann method �LB� �26–29�, and
Stochastic rotation dynamics �SRD� �30–32�. Due to the
complex nature of the problem, all simulation methods have
to simplify in some point. Either Brownian motion is ne-
glected or hydrodynamic interactions are included on a very
simplified level. In many cases, simulations are done without
a quantitative comparison to experiments. In the present pa-
per, we combine molecular dynamics �MD� to simulate the
colloidal particles, SRD for the description of the fluid, and a
charge regulation model that provides us with realistic
parameters for the Derjaguin-Landau-Vervey-Overbeek
�DLVO� potentials �33,34� in the MD simulation. We include
long-range hydrodynamic interactions on a coarse-grained
level in the SRD part, and we only include DLVO pair po-
tentials in the MD part. No electrostatic many-body interac-
tions or electrodynamic interactions are considered, and
modifications of the pair potentials due to locally increased
colloid concentrations are neglected, too. However, many
numerical investigations are based on much simpler models
than ours. In our opinion, our model covers the main prop-
erties quite well.
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Our paper is organized as follows. First we briefly de-
scribe our MD implementation, followed by a short sketch of
the SRD simulation method and a description of how we
have implemented our shear cell. The simulation method is
described in detail in Ref. �30�. Then we describe the
so-called 2 pK charge regulation model, which relates our
simulation parameters with the pH value and the ionic
strength I adjusted in the experiment. A short description of
the simulation setup and of the experiments carried out fol-
lows. After that, we present our simulation results and com-
pare them to the experimental data. Finally, a summary is
given.

II. MOLECULAR DYNAMICS

We study colloidal particles, composing the solid fraction,
suspended in a fluid solvent. The colloidal particles are simu-
lated with molecular dynamics �MD�, whereas the solvent is
modeled with stochastic rotation dynamics �SRD� as de-
scribed in Sec. III.

In the MD part of our simulation, we include effective
electrostatic interactions and van der Waals attraction, a lu-
brication force, and Hertzian contact forces. The electrostatic
and van der Waals potential are usually referred to as DLVO
potentials �8–10,24,35,36�, which capture the static proper-
ties of colloidal particles in aqueous suspensions. The first
component is the screened Coulomb term

VCoul = ��r�0�2 + �d

1 + �d

4kBT

ze
tanh� ze�

4kBT
��2

�
d2

r
exp�− ��r − d�� , �1�

where d denotes the particle diameter and r is the distance
between the particle centers. e is the elementary charge, T is
the temperature, kB is the Boltzmann constant, and z is the
valency of the ions of added salt. Within DLVO theory, one
assumes linear screening, mainly by one species of ions with
valency ±z �e.g., z= +1 for NH4

+�. The first fraction in Eq. �1�
is a correction to the original DLVO potential, which takes
the surface curvature into account and is valid for spherical
particles �37�.

The effective surface potential � is the electrostatic poten-
tial at the border between the diffuse layer and the compact
layer. It may therefore be identified with the � potential. It
includes the effect of the bare charge of the colloidal particle
itself, as well as the charge of the ions in the Stern layer,
where the ions are bound permanently to the colloidal par-
ticle. In other words, DLVO theory uses a renormalized sur-
face charge, which we determine by the model described in
Sec. IV.

� is the inverse Debye length defined by �2=8��BI, with
the ionic strength I. The Bjerrum length �B : = �e2

4��0�r
measures

the distance at which the electrostatic interaction of two
elementary charges amounts to �−1=kBT. �0 is the permittiv-
ity of the vacuum and �r is the relative dielectric constant of
the solvent �we use 81 for water, i.e., �B=7 Å for room
temperature�.

The Coulomb term of the DLVO potential competes with
the attractive van der Waals term

VVdW = −
AH

12
� d2

r2 − d2 +
d2

r2 + 2 ln� r2 − d2

r2 �� . �2�

AH=4.76�10−20 J is the Hamaker constant �25�, which in-
volves the polarizability of the particles. The singularity of
VVdW for touching particles is removed and the primary
minimum is modeled by a parabola as described in Ref. �30�.

Long-range hydrodynamic interactions are taken into ac-
count in the simulation for the fluid as described below. This
can only reproduce interactions correctly down to a certain
length scale. On shorter distances, a lubrication force has to
be introduced explicitly in the MD simulation. The most
dominant mode, the so-called squeezing mode, is an addi-
tional force

Flub = − �vrel, r̂�r̂
6�	

r − d
�R

2
�2

�3�

between two particles with radius R and relative velocity vrel.
	 is the dynamic viscosity of the fluid. In contrast to the
DLVO potentials, the lubrication force is a dissipative force.
When two particles approach each other very closely, this
force becomes very large. To ensure numerical stability of
the simulation, one has to limit Flub. We choose a maximum
force at a certain gap width rsc and shift the force so that the
maximum force cannot be exceeded: Instead of calculating
Flub�r�, we take the value for Flub�r+rsc�. In addition, since
the force decays for large particle distances, we can intro-
duce a large cutoff radius rlc for which we assume Flub�r�
	0 if r−d
rlc. As the intention of Flub is to correct the
finite resolution of the fluid simulation, rsc and rlc have to be
adjusted in a way that the dynamic properties, i.e., the vis-
cosity of a simulated particle suspension with weak DLVO
interactions, fits the measurements. It turns out that rsc= d

40
and rlc= 3

2d work best. Our approach for Flub is similar to the
one often used in lattice Boltzmann simulations �26�. In con-
trast to Ladd �26�, we have chosen to use two cutoff radii to
be able to treat small and large gaps separately. There are
different approaches, e.g., for Stokesian dynamics �18�,
where the force field is expanded to a multipole series and
the far field part is subtracted afterwards.

Finally, we use a Hertz force described by the potential

VHertz = K�d − r�5/2 if r � d , �4�

where K is the constant that describes the elasticity of the
particles in the simulation. The Hertz force avoids that the
particles penetrate each other. It also contains a damping
term in normal direction,

FDamp = − �vrel, r̂�r̂�D

d − r , �5�

with a damping constant �D.
Since in this work no stress perpendicular to the shear

direction is applied, the tangential forces at the particle sur-
face are not of essential importance. To verify this, we have
increased the spacial resolution of the fluid simulation, in-
cluded tangential forces on the particles, and allowed particle
rotations. Even though the computational effort was consid-
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erably larger, and one could expect that more effects on the
length scale below the particle diameter could be covered,
one could observe only a change of some percent in the
viscosity and in the velocity profile. Due to the DLVO po-
tential and the lubrication force, the particles very rarely get
into contact as long as no confining stress is applied. The
only case in which particles really touch each other, would
be if the � potential is close to zero at a certain pH value.
This pH value is called “isoelectric point.” It depends on the
material of the suspended particles and on the solvent. For
our system it is at pH=8.7 �36�. In experiments close to the
isoelectric point, a solid fraction immediately flocculates out
and sediments. In the simulation, one ends up with only one
big cluster in the simulation volume, which corresponds to a
part of a floc seen in the experiment.

For this study, we do not apply tangential forces and thus,
having only central forces, we could neglect rotation of the
particles. This reduces the computational effort substantially.

III. STOCHASTIC ROTATION DYNAMICS (SRD):
SIMULATION OF THE FLUID

The stochastic rotation dynamics method �SRD� was first
introduced by Malevanets and Kapral �38,39�. The method is
also known as “real-coded lattice gas” �31� or as
“multiparticle-collision dynamics” �MPCD� and has been
successfully applied to simulate many important systems
such as complex fluids containing polymers �40,41�, vesicles
in flow �42�, and dynamics of chemical reactions �43�. The
method is a promising tool for a coarse-grained description
of a fluctuating solvent, e.g., in Ref. �44� the results of simu-
lations of a flow around a cylinder are presented, or in Ref.
�32� sedimentation of a particle suspension is studied.

The method is based on so-called fluid particles with con-
tinuous positions and velocities. Each time step is composed
of two simple steps: one streaming step and one interaction
step. In the streaming step the positions of the fluid particles
are updated as in the Euler integration scheme known from
molecular-dynamics simulations,

ri�t + �� = ri�t� + �vi�t� , �6�

where ri�t� denotes the position of the particle i at time t,
vi�t� is its velocity at time t, and � is the time step used for
the SRD simulation. After updating the positions of all fluid
particles, they interact collectively in an interaction step that
is constructed to preserve momentum, energy, and particle
number. The fluid particles are sorted into cubic cells of a
regular lattice and only the particles within the same cell are
involved in the interaction step. First, their mean velocity

u j�t��= 1
Nj�t��

�i=1
Nj�t��vi�t� is calculated, where u j�t�� denotes the

mean velocity of cell j containing Nj�t�� fluid particles at
time t�= t+�. Then, the velocities of each fluid particle in cell
j are updated as

vi�t + �� = u j�t�� + � j�t�� · �vi�t� − u j�t��� . �7�

� j�t�� is a rotation matrix, which is independently chosen
randomly for each time step and each cell. We use rotations
about one of the coordinate axes by an angle ±, with 

fixed �45�. The coordinate axis as well as the sign of the
rotation are chosen at random, resulting in six possible rota-
tion matrices. The mean velocity u j�t� in the cell j can be
seen as the streaming velocity of the fluid at the position of
the cell j at the time t, whereas the difference �vi�t�−u j�t���
entering the interaction step can be interpreted as a contribu-
tion to the thermal fluctuations. Thus, to calculate the local
temperature in the cell under consideration, one has to sum
over the squares of this expression.

The method just described is able to reproduce hydrody-
namics and thermal fluctuations. To couple the colloidal par-
ticles to the streaming field of the solvent, we use “Coupling
II” of Ref. �30�: we modify the rotation step of the original
SRD algorithm slightly. The colloidal particles are sorted
into the SRD cells as well and their velocity enters into the
calculation of the mean velocity u j�t� in cell j. Since the
mass of the fluid particles is much smaller �in our case it is
250 times smaller� than the mass of the colloidal particles,
we have to use the mass of each particle—colloidal or fluid
particle—as a weight factor when calculating the mean ve-
locity,

u j�t�� =
1

Mj�t��
�
i=1

Nj�t��

vi�t�mi, �8�

with Mj�t�� = �
i=1

Nj�t��

mi, �9�

where we sum over all colloidal and fluid particles in the
cell, so that Nj�t�� is the total number of both particles to-
gether. mi is the mass of the particle with index i and there-
fore Mj�t�� gives the total mass contained in cell j at the time
t�= t+�. The update rule for the particle velocities vi�t� and
positions ri�t+��, which we apply, is summarized in Eqs.
�6�–�9�. This method to couple some embedded material to
the SRD simulation is described for different applications in
the literature �46,47�.

This coupling method does not enforce no-slip boundaries
on the particle surface, as in the method suggested by Inoue
et al. �31�. Moreover, as very recently discussed by Padding
and Louis �48�, purely radial interactions effectively intro-
duce slip boundary conditions. Considering the drag coeffi-
cient, a prefactor changes and this could be corrected by
assuming a different hydrodynamic radius. We have checked
the influence of hydrodynamic interactions by removing the
fluid completely and by varying the resolution of the SRD
simulation. Also, two different coupling methods as de-
scribed in Ref. �30� have been applied. Without fluid,
the achieved shear rate as well as the viscosity differed
strongly, whereas the difference between the two coupling
methods was in the order of some percent only. Therefore,
we need hydrodynamics to some extent, but we have chosen
the coupling method with less computational effort. Very re-
cently, Yamamoto et al. have shown that for colloidal gela-
tion, hydrodynamic interactions are of minor importance
�49� for 3D systems, but in contrast to our work, they focus
on the static properties of a colloidal system quenched to
zero temperature.
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In Ref. �30�, we have described a simple method to intro-
duce shear at the fluid boundary by adding a velocity offset
to all fluid particles reflected at the shear plane. From a con-
stant velocity offset �v one can calculate the mean shear
force

FS =��
i=1

L

mi
�vi�t�

�  , �10�

where L denotes the average number of fluid particles cross-
ing through the shear plane in one time step and �¯� stands
for a time average. L can be expressed by the mean free path
and the number density of fluid particles. This would be a
force driven shear, where one has only indirect control on the
shear rate �̇ or the shear velocity vS, respectively. Therefore,
we modify the mean velocity u j�t�� in the cells close to the
shear plane by changing the velocity of each fluid particle as
well as the velocity of the colloidal particles contained in
that specific cell by the difference vS−u j�t��. By construc-
tion, the mean velocity in these cells is equal to the shear
velocity vS after that step. At the wall itself we implement
full slip boundary conditions for the fluid and for the colloi-
dal particles. The boundary in the direction of the shear pro-
file �direction of the velocity gradient� is chosen to be non-
periodic. By doing so, we can also observe phenomena such
as wall-slip, nonlinear velocity profiles, or density profiles in
our shear cell �see Sec. VII C�. In the case of a nonlinear
velocity profile, the viscosity is not well defined. We extract
the central region of the profile where it is in first approxi-
mation linear and estimate there an averaged viscosity. This
is the ratio of the velocity gradient and the shear force, which
can be calculated in analogy to Eq. �10� by carrying out the
sum over all velocity changes made. The region where we
estimate the velocity gradient is half the system size.

We have tested a number of boundary conditions and dif-
ferent ways to impose shear, but the method just described
turned out to work best. No-slip boundaries at a top and
bottom plane seemed to work for high volume fractions and
unless the potentials get attractive. As soon as �only slight�
cluster formation sets in, the particles concentrate in the cen-
ter of the system and lose contact with the sheared walls.
Shearing only the fluid and not the colloidal particles always
works, but the resulting viscosity is much too small. In fact,
what one measures is the flow of the fluid streaming around
the particles like a flow through a porous medium. The next
point is how to determine the shear force and the velocity
gradient we need for the calculation of the shear viscosity.
The force is always related to any velocity changes made in
the system, and its calculation is straightforward in most
cases.

The imposed velocity difference divided by the system
size perpendicular to the shear plane would give an averaged
gradient. For clustered systems, not even the shape of the
shear viscosity against shear rate was comparable to the mea-
surements. If the velocity gradient changes within the system
�compare Fig. 4�, we have to take care that we measure the
viscosity in the bulk, i.e., that we take the velocity gradient
there. At least if the particles are not too strongly clustered,
the slope of the plateau in the center of the system can be

taken as a “good” velocity gradient. We use this velocity
gradient as achieved shear rate as mentioned above. With this
scheme for strongly attractive forces, the obtained viscosity
	��̇� for the simulation stays in the vicinity of the measured
curve, whereas for other methods we tried out, the points of
the simulation usually ended up far off the measured curve.

Fully periodic boundary conditions for sheared systems,
known as Lees-Edwards conditions, would be a good choice
for stable suspensions. As soon as clusters are formed, the
velocity profile becomes nonlinear, as discussed above. But,
additionally the location of the cluster, i.e., the position of
the plateau, is not fixed anymore to the center of the system,
which makes it more difficult to extract the correct velocity
gradient. In addition, the shear force would be determined
from the velocity changes of the particles passing around the
periodic boundaries. If the cluster by chance stays in the
center of the system, again only the fluid would be sheared
and only indirectly, transmitted by the fluid, the force would
be exerted on the particles, as if with closed boundaries only
the walls would move and no sheared regions close to the
wall were implemented. Together with the periodic bound-
aries, this would lead to large fluctuations of the shear force,
caused by the present position of the cluster. Furthermore,
the boundary conditions would have to be consistent for the
MD and for the SRD simulation. For the MD part, it is
important that the position, where a particle reenters the sys-
tem after passing around the periodic boundary, is shifted by
2tvS, with t being the continuously increasing simulation
time and vS the shear velocity. Additionally, this shift has to
be wrapped around the periodic boundaries in shear direc-
tion. If we do the same with the fluid particles, the shift
could be any value, not necessarily an integer multiple of the
fluid box size. What we want to point out is that without any
further restrictions, the grid in the SRD rotation step would
no longer be regular in this plane, which in addition is the
plane where one measures the shear force. To overcome this
problem, one can restrict the shear rate to values determined
by the SRD grid size and the SRD time step, but the other
difficulties mentioned before remain.

IV. THE CHARGE REGULATION MODEL

To determine the effective surface potential that enters the
DLVO potential, we use the model described in the follow-
ing. In reality, the surface charge is achieved by adsorption
and desorption of charge determining ions leading to an elec-
trostatic potential difference between surface and bulk,
which in turn influences ion adsorption. A full description of
this regulation of surface charges requires two parts: the first
part describes the relation between surface charge density
and surface potential due to the electrolytic environment,
whereas the second part quantifies the ion adsorption de-
pending on the surface concentration of charge-determining
ions.

Concerning the first part, a relation between the surface
charge density � and the surface potential � of a charged
spherical colloidal particle of radius R immersed in an elec-
trolytic environment of relative dielectric constant �r and
ionic strength I is given within Debye-Hückel theory �50,51�
by
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� =
R�

�0�r�1 + �R�
. �11�

As mentioned above, we consider the Stern layer as a part of
the surface charge. Thus we can identify the effective surface
potential in DLVO theory with the � potential, and we can
thus skip a discussion of bare charge versus effective charge
�52–54�.

In the second part of our model, the adsorption of charge-
determining ions on the surface of the colloidal particle is
described by assuming that the only mechanism of adsorp-
tion is that of protons �H+� on surface sites �−S�. It turned
out that this assumption leads to reasonable results for sur-
faces made of Al2O3. Adsorption is described by the two
chemical reactions �55�

− S− + H+ � − SH, �12�

− SH + H+ � − SH2
+, �13�

with the two reaction constants

K1: =
�− S−��H+�exp�− �e��

�− SH�
, �14�

K2: =
�− SH��H+�exp�− �e��

�− SH2
+�

. �15�

In terms of the surface site concentrations, the total num-
ber of surface sites per area and the surface charge density
are given by NS= �−S−�+ �−SH�+ �−SH2

+� and �=−e�−S−�
+e�−SH2

+�, respectively. Defining pK1 : =−log10�K1� and
pK2 : =−log10�K2� yields the point of zero charge pHz, i.e.,
the pH value of vanishing surface charge, as pHz= 1

2 �pK1

+ pK2�. The surface site density NS and the difference
�pK : = pK1− pK2 are treated as adjustable parameters.

The above equations lead to the relation

�

eNS
=

� sinh��N − �e��
1 + � cosh��N − �e��

�16�

with the Nernst potential �N : = ln�10��pHz− pH� and � : =2
�10−�pK/2.

Equations �11� and �16� can be solved self-consistently for
� as a function of pH. For our system of Al2O3 particles, we
find �pK=4.2 and NS=0.22/nm2. With these values the
measured � potential of 52 mV at pH=6, I=0.01 mol/ l and
up to 120 mV at pH=4, I=0.01 mol/ l can be reproduced
best. For the experimental determination of the � potential,
electrophoretic �Delsa 440SX, Beckman-Coulter GmbH,
Germany� and electrokinetic measurements �AcustoSixer IIs,
Colloidal Dynamics Ind., USA� were performed. To calcu-
late the � potential, Henry’s theory �8� was used. For details,
see Ref. �56�. We have to admit that the relation between the
directly measured quantities, e.g., electrophoretic mobility,
and the � potential is a subject of current research �57–60�.

V. SIMULATION SETUP

In our simulation, we try to model the experimental sys-
tem as accurately as possible. We start with spherical par-

ticles of diameter d=0.37 �m, the mean diameter of the par-
ticles used in the experiment. The simulation box is 48d
=17.76 �m long in the x direction, 24d=8.88 �m in the z
direction, and 12d=4.44 �m in the y direction. To achieve a
volume fraction of usually �=35%, as in the experiment, we
need to simulate 9241 spheres. Our shear direction is the x
direction, and the velocity gradient of the shear flow points
in the z direction; in other words, we shear the upper and
lower xy plane with respect to each other in the x direction.
We use periodic boundaries in the x and y directions and
closed boundaries in the z direction for both fluid and MD
particles. The energy supplied by the shear force is dissipated
by means of a Monte Carlo thermostat described in Refs.
�30,87�. It acts on the fluid particles as well as on the MD
particles and conserves the momentum in each SRD cell.

VI. EXPERIMENTAL SETUP

Experiments are carried out with high-purity �99.97%�
-Al2O3 powder �RCHP DBM, Baikowski Malakoff Indus-
tries, Inc., USA�. The mean particle diameter is 0.367 �m
�Coulter LS Particle Size Analyzer� and the size distribution
is narrow �d10=0.176 �m, d90=0.664 �m�. The powder is
suspended in bidistilled water �Merck, Germany�. The sus-
pension is then dispersed with alumina balls in a ceramic
container for 24 h at a low rotational speed to keep the abra-
sion low. Subsequently, the suspension is degassed at
50 mbar under agitation. Then, in order to reduce the ionic
strength to the desired degree, the suspension is purified by
the dialysis technique. In this way, the majority of ions are
removed and a background electrolyte of a very low salt
concentration �5�10−4 mol/ l� is obtained for suspensions of
high solids loading. Starting from this master suspension,
suspensions with increased ionic strength are obtained by
adding different amounts of dry ammonium chloride NH4Cl
�Merck, Germany�. The pH of the suspensions is adjusted to
pH=6 with 0.1 and 1 mol/ l hydrochloric acid HCl �Merck,
Germany�, if necessary. Thereby, the ionic strength and pH
are revised by use of a laboratory pH and conductivity meter
�inoLab pH/Cond Level 2, WTW GmbH, Germany�. The
electrophoretic mobility of dilute suspensions is measured
with a Coulter Delsa 440 SX. Irreversible aggregation due to
inhomogeneous salt concentration is not of importance here.
If the ionic strength is strongly increased and after that a
second dialysis step is performed to remove the ions again,
the original viscosity is restored.

The ion concentrations of selected ions are measured be-
fore and after dialysis using inductively coupled plasma–
optical emission spectroscopy �ICP-OES, Model JY 70 plus,
France�. The suspensions are characterized using a Viscolab
LC10 rheometer �Viscolab LM rheometer with control unit
Viscolab LC10, Physica, Germany� with a cup and bob or a
double gap geometry. The measurements are either per-
formed immediately after suspension preparation or they are
stored on a roller bank to avoid sedimentation. Sedimenta-
tion during the experiment can be excluded, since it takes
much longer than the whole experiment, and the shear forces
are much larger than gravity. Shear rate controlled experi-
ments are performed at a constant temperature of 20 °C. The
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suspensions are sheared at a constant shear rate of �̇
=300/s �Pe=8.8� before starting the actual ramp measure-
ment. In the experiments, the shear rate is increased up to
�̇=4000/s �Pe=117� and decreased again to zero. In this
paper, whenever referring to a shear rate we also specify the
Péclet number

Pe = 6�	R3�̇/kBT , �17�

to make it easier for the reader to compare our results to
other data. When the suspensions are presheared, an occur-
ring discrepancy between the measured viscosity in the in-
creasing ramp and the decreasing one can be minimized. A
detailed description of the experiments will be published
elsewhere �17,61�.

VII. RESULTS

A. Stability diagram

Depending on the experimental conditions, one can obtain
three different microstructures: a clustered region, a sus-
pended region, and a repulsive structure. The charge regula-
tion model allows us to quantitatively relate the interaction
potentials to certain experimental conditions. A schematic
picture of the stability diagram is shown in Fig. 1. Close to
the isoelectric point �pH=8.7�, the particles form clusters for
all ionic strengths since they are not charged. At lower or
higher pH values, one can prepare a stable suspension for
low ionic strengths because of the charge, which is carried
by the colloidal particles. At even more extreme pH values,
one can obtain a repulsive structure due to very strong elec-
trostatic potentials �up to �=170 mV for pH=4 and I
=1 mmol/ l, according to our model�. The repulsive structure
is characterized by an increased shear viscosity. In the fol-
lowing, we focus on three states: state A �pH=6, I
=3 mmol/ l� is in the suspended region, state B �pH=6, I
=7 mmol/ l� is a point already in the clustered region but still
close to the border, and state C �pH=6, I=25 mmol/ l� is
located well in the clustered region.

Some typical examples for the different microstructures
are shown in Figs. 2�a�–2�d�. These examples are meant to
be illustrative only and do not correspond exactly to the
cases A–C in Fig. 1 denoted by uppercase letters. In the
suspended case �a�, the particles are mainly coupled by hy-
drodynamic interactions. One can find a linear velocity pro-
file and a slight shear thinning. If one increases the shear rate
�̇
500/s �Pe
15�, the particles arrange in layers. The same
can be observed if the Debye-screening length of the elec-
trostatic potential is increased �b�, which means that the sol-
vent contains fewer ions �I�0.3 mmol/ l� to screen the par-

FIG. 1. Schematic stability diagram for volume fraction �
=35% in terms of pH-value and ionic strength involving three dif-
ferent microstructures: A clustering regime due to van der Waals
attraction, stable suspensions where the charge of the colloidal par-
ticles prevents clustering, and a repulsive structure for further in-
creased electrostatic repulsion. This work concentrates on state A
�pH=6, I=3 mmol/ l� in the suspended region, state B �pH=6, I
=7 mmol/ l� close to the border but already in the clustered region,
and state C �pH=6, I=25 mmol/ l� in the clustered region. The bor-
ders are not sharp transitions, but notable in a change of the shear
viscosity.

FIG. 2. �Color online� Images of four different cases. For better
visibility we have chosen smaller systems than we usually use for
the calculation of the viscosity. The colors denote velocities: Dark
particles are slow, bright ones move fast. The potentials do not
correspond exactly to the cases A–C in Fig. 1, but they show quali-
tatively the differences between the different states: �a� Suspension
like in state A, at low shear rates. �b� Layer formation, which occurs
in the suspension �state A� at high shear rates and in the repulsive
regime already at moderate shear rates. �c� Strong clustering, like in
state C, so that the single cluster in the simulation is formed. �d�
Weak clustering close to the border like in state B, where the cluster
can be broken into pieces, which follow the flow of the fluid
�plug flow�.
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ticle charges. On the other hand, if one increases the salt
concentration, electrostatic repulsion is screened even more,
and attractive van der Waals interaction becomes dominant
�I
4 mmol/ l�. Then the particles form clusters �c�, and vis-
cosity rises. A special case, called “plug flow,” can be ob-
served for high shear rates, where it is possible to tear the
clusters apart, and smaller parts of them follow with the flow
of the solvent �d�. This happens in our simulations for I
=25 mmol/ l �state C� at a shear rate of �̇
500/s
�Pe
15�. However, as long as there are only one or two big
clusters in the system, it is too small to expect quantitative
agreement with experiments. In these cases, we have to focus
on state B�I=7 mmol/ l� close to the border.

In our simulations, we restrict ourselves to the region
around pH=6 where we find the border between the sus-
pended region and the clustered regime at about I
=4 mmol/ l in the simulations as well as in the experiments.
Also the shear rate dependence of the viscosity is compa-
rable in simulations and experiments as discussed in Sec.
VII C.

In Ref. �62�, a qualitative stability diagram similar to Fig.
1 has been shown. The borders there are shifted, since they
depend on the threshold value for which one defines that the
viscosity has increased. Correspondingly, if one is less sen-
sitive to the viscosity increase, one would still consider the
system to be suspended, if only weak cluster formation takes
place.

B. Total energy

In our simulations, we calculate the total energy, because
it can be used as a tool to check if the response of the simu-
lation to the variation of any parameter is consistent with the
expectations, e.g., a decrease of the surface charge on the
colloidal particles should cause the secondary minimum of
the DLVO potential to become deeper and thus decrease the
total energy, but if the total energy increases, this can be an
indication for numerical instabilities.

The total energy comprises the kinetic energy of both
fluid and colloidal particles, including thermal motion on the
microscopic level, as well as the potential energy due to
Coulomb repulsion, van der Waals attraction, and Hertz con-
tact forces. Our simulations are carried out at room tempera-
ture �T=295 K� and constant volume fraction. Supposing a
linear velocity profile, the kinetic energy increases quadrati-
cally with the shear rate �̇. This can be observed if the elec-
trostatic repulsion is, on the one hand, strong enough to pre-
vent cluster formation due to van der Waals attraction and,
on the other hand, weak enough, so that the colloidal par-
ticles can move relatively freely without undergoing a glass
transition or crystallization.

If the interactions are strongly repulsive, i.e., in the case
of very low salt concentration, where the Debye-screening
length is large, one can see an extra contribution of the elec-
trostatic repulsion to the total energy. If the volume fraction
is low, the particles can still find a configuration in which the
mean nearest-neighbor distance is larger than the interaction
range of the repulsion. But, if the volume fraction is in-
creased, the particles have to be packed closer, which leads

to a constant positive offset to the total energy. It only de-
pends on the potentials and on the volume fraction, but not
on the shear rate.

In a similar way as for repulsive interactions, one can
understand the negative energy contribution in the case of
high salt concentrations: The DLVO potentials contain a
minimum where attractive Van der Waals interaction is stron-
ger than electrostatic repulsion. Then the particles form clus-
ters and “try” to minimize their energy. In Fig. 3, for small
shear rates the values for the energy in the clustered case of
state C �I=25 mmol/ l� are lower than for the suspended case
of state A �I=3 mmol/ l�. We have plotted the total energy
divided by the total number of all particles �fluid particles
plus colloidal particles� in units of kBT. For �̇→0, the energy
per particle approaches 3

2kBT as one would expect in 3D. The
solid line in Fig. 3 is the sum of 3

2kBT per particle with the
kinetic energy of a fluid with a linear velocity profile,

Etot =
3

2
kBTNtot +

1

24
V�̄�̇2Lz

2, �18�

where Ntot is the total number of both fluid and colloidal
particles, V denotes the volume of the simulated system, �̄ is
the averaged mass density of the suspension, and Lz is the
extension in the z direction �perpendicular to the shear
plane�. State A coincides very well with this curve.

For state C, the behavior is shear-rate-dependent: In con-
trast to the repulsive case, clusters can be broken up. This
happens at a shear rate �̇=500/s �Pe=15� �see Fig. 3� where
one obtains two clusters moving in opposite directions. Since
in this case the resistance of the system decreases, the veloc-
ity of the two clusters becomes larger. Since both clusters are
moved as a whole, their energy becomes even larger than in
the suspended case. If one further increases the shear rate, no

FIG. 3. Total energy depending on the shear rate �̇ for the states
A �I=3 mmol/ l� and C �I=25 mmol/ l� of Fig. 1. In state A the
system is a stable suspension; in state C cluster formation reduces
the total energy at low shear rates. At �̇=500/s �Pe=15�, the cluster
can be broken up into two parts moving in opposite directions. The
two solid bodies have a larger kinetic energy than the suspension
with a linear velocity profile. This explains the crossover of the two
curves. For even higher �̇, the clusters are broken up in more
pieces, leading ultimately to the same structure as for the suspended
state A. The energy axis has been scaled by the total number of
particles �fluid particles plus colloidal particles� and plotted in units
of kBT. The solid line is the analytical solution �Eq. �18�� for a
linear velocity profile; the dashed lines are a guide to the eye.
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�big� clusters can form anymore, and the energies for both
salt concentrations are nearly the same and correspond to the
kinetic energy of a suspension with a nearly linear velocity
profile. For �̇=1000/s �Pe=29�, state C coincides with the
analytic curve.

C. Shear profile and shear viscosity

In each of the three regimes a typical velocity profile of
the shear flow occurs. For the suspended microstructure, one
finds a linear velocity profile �Fig. 4�a�� with nearly Newton-
ian flow. The particles are distributed homogeneously, thus
the density profile is structureless �Fig. 5�a��. The motion of
the particles is only weakly coupled by the hydrodynamic
forces. At high enough shear rates ��̇
500/s�Pe
15��, the
particles arrange in layers parallel to the shear plane, as can
also be seen in the density profile �Fig. 5�b��. This arrange-
ment minimizes collisions between the particles. As a result,
the shear viscosity decreases, as shown in Fig. 6, which we
discuss more in detail below. Shear-induced layer formation
has been reported in the literature for different experiments
�63–67� and Stokesian dynamics simulations �19,68�. For
low shear rates, Brownian motion disturbs the layers or pre-
vents their formation. As shown in Ref. �19�, hydrodynamic
forces can destroy them as well, if the shear rate is high
enough. In our simulations, we do not reach these conditions.
In the simulations, shear rates up to 2000/s �Pe=59� can be
realized before limitations of the simulation method influ-
ence the results. The increment of the shear angle in one
SRD time step �= �̇�SRD amounts to about � /4 then, i.e., the
offset in the x direction between two neighboring layers of
SRD cells in the z direction amounts to one cell per SRD
time step.

Furthermore, the volume fraction and the interaction
range of the electrostatic repulsion, or the ionic strength, re-
spectively, influence the layer formation: In the repulsive re-
gime, the layers are more clearly already at moderate shear

rates. It can be excluded that the effect is purely a finite-size
effect, since for unsheared suspensions no layers can be ob-
served, at least some particle diameters from the walls. In the
repulsive regime, the particles try to optimize their local
structure, but a long-range order as in the case of a sheared
system cannot be seen.

In the clustered regime, the clusters move in the fluid as a
whole. They are deformed, but since the interparticle forces
are stronger than the hydrodynamic forces, the cluster moves
more like a solid body than like a fluid. Often there is one
big cluster that spans the whole system. The density profile
�Fig. 5�c�� increases in the central region and decays at the
regions close to the border, since particles from there join the
central cluster. When averaging the velocity profile in the
shear flow, one finds a very small velocity gradient in the
center of the shear cell and fast-moving particles close to the
wall, where the shear is imposed �Fig. 4�b��. The velocity
profile is nonlinear on the length scale of the simulations. In
the experiment, the physical dimensions are much larger and
therefore the velocity profile can become approximately lin-
ear again if the system consists of many large clusters. How-
ever, due to the computational effort in simulations it is im-
possible today to measure the shear viscosity for these

FIG. 4. Profiles of tangential velocity component �vx� in normal
direction �z�: �a� Linear profile in the suspended regime, state A of
Fig. 1 �I=3 mmol/ l� at �̇=500/s �Pe=15�. �b� Cluster formation in
state C �I=25 mmol/ l� at �̇=100/s �Pe=2.9�. In principle, one
could determine the viscosity of one single cluster from the central
plateau, but this is not the viscosity found in experiments. There,
one measures the viscosity of a paste consisting of many of these
clusters. �c� Same as case �b� but with higher shear rate ��̇=500/s
Pe=15�. Hydrodynamic forces are large enough to break the cluster
into two pieces. The velocity axis is scaled with the shear velocity
vS for better comparability.

FIG. 5. Density profiles: �a� Suspended case: State A in Fig. 1
�I=3 mmol/ l�, at low shear rates ��̇=50/s �Pe=1.5��. The density
distribution is homogeneous. �b� Shear induced layer formation:
This is state A as in graph �a� of this figure, but for a high shear rate
��̇=1000/s �Pe=29��. �c� Strong attractive forces in state
C �I=25 mmol/ l�: For low shear rates ��̇=50/s �Pe=1.5�� only one
central cluster is formed, which is deformed slowly.
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strongly inhomogeneous systems. We have scaled our system
by a factor of 2 in the x and z directions �keeping the volume
fraction �=35% constant�, but we still observe one big clus-
ter after some hundreds of SRD time steps, i.e., finite-size
effects are still present in our simulations.

Closer to the border, clusters can then be broken up into
small pieces by the hydrodynamic forces at least for high
shear rates. In state C of Fig. 1, this happens for the first time
at �̇=500/s �Pe=15�, so that one can find two clusters in the
system moving in opposite directions. The velocity profile of
this case is shown in Fig. 4�c�. For even higher shear rates or
closer to the border �e.g., state B�, the clusters are broken
into smaller pieces. Then, they move in the shear flow with
an approximately linear velocity profile. Due to van der
Waals attraction, the system resists with stronger shear forces
and the viscosity is higher than in the suspended case
�Fig. 6�.

In Fig. 6, the simulation results are shown together with
the experimental results, both for the two cases of a slightly
clustered system in state B �I=7 mmol/ l� and a suspension
�state A, I=3 mmol/ l�. For the suspension �state A�, the vis-
cosity decreases with the shear rate �“shear thinning”�. The
experimental data and the simulation are consistent within
the accuracy of our model. There are several reasons why
our model does not exactly fit the measurements: The most
insecure factor that enters into the comparison is the mea-
surement of the � potential. Starting from this point, we set
up our charge regulation model to extrapolate to different salt
concentrations, assuming two reactions the only processes
that determine the surface charge of the colloidal particles.
Furthermore, we have monodisperse spherical particles,
which is another simplification in our model. Then, the lu-
brication force as a correction for the finite resolution of the
fluid method can only recover to a certain degree the hydro-
dynamics on smaller length scales than the cell size of the
fluid simulation, e.g., we have not implemented other modes
of lubrication than the “squeezing mode” �Eq. �3��.

However, we have done several tests where we have
simulated systems with size and charge polydispersity in the
order of magnitude corresponding to the experimental con-
ditions. We have tested different sorts of boundary condi-

tions, different ways to implement shear, and different cou-
pling methods between fluid and particles. In most of the
tests, the achieved shear viscosity in the simulation did not
change notably. In our experience, the way shear is imposed
and the particle size have the largest influence on the result.

Finally, one has to keep in mind that the viscosity of the
suspension can be varied by more than one order of magni-
tude, e.g., by changing the ionic strength. In this context, the
deviations between simulation an experiment are small.

For the slightly clustered case �state B�, an increase of the
shear viscosity, compared to the suspended case, can be ob-
served in the experiment as well as in the simulations. Shear
thinning becomes more pronounced, because clusters are
broken up, as mentioned above. However, the shear-rate de-
pendence is stronger in the simulations than in the experi-
ment. This can be the first indication of finite-size effects.

We have studied the dependence of the simulated shear
viscosity in dependence of the system size. The effect is most
important for low shear rates and thus we carried out several
simulations for state A at �̇=20/s �Pe=0.6� and for state B at
�̇=50/s �Pe=1.4�. We have chosen these values because
clustering is already too strong in state B at �̇=20/s
�Pe=0.6� to reasonably determine a viscosity, and the system
size dependence becomes too small for �̇=50/s �Pe=1.4�
were state A. In Fig. 7, we plot the squared relative deviation
between simulation and measurements against the system
size. We do not know if the simulation results would exactly
converge to the measured values if the simulated system is
large enough. However, the figure shows the trend that the
deviation becomes smaller for larger system sizes, but to
reach in state B the same accuracy as in state A one would at
least have to double the system size in each dimension. It
then takes approximately twice as long for the system to
relax to a steady state, resulting in a factor of 16 in the
computational effort. This indicates that each single point of
Fig. 6 would need approximately 3000 CPU hours. For
smaller shear rates or even deeper in the clustered regime of
the stability diagram, e.g., in state C �I=25 mmol/ l�, the
finite-size effects become more pronounced—ending up in
the extreme case of only one big cluster existing in the sys-
tem. For simulations with good accuracy, the effort again
increases at least by the same factor.

FIG. 6. Comparison between simulation and experiment: viscos-
ity in dependence of the shear rate for the states A �I=3 mmol/ l�
and B �I=7 mmol/ l� of Fig. 1. Note: shear thinning is more pro-
nounced for the slightly attractive interactions in state B than for the
suspended state A. Lines denote experimental data �17�, points are
results from our simulations.

FIG. 7. Discrepancy between simulated viscosity and measure-
ment for states A and B of Fig. 1 for different system sizes at low
shear rates. The plot shows squared relative differences against z
extension of the simulation volume. The lines are a guide to the eye.
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Unfortunately, this would be the most interesting case
with respect to soil mechanics and to understand landslides,
which was our initial motivation. Anyhow, if we compare
state A and state B, shear thinning becomes stronger with
increasing ionic strength. In the experiments, the effect be-
comes much stronger for larger ionic strengths �up to I
=65 mmol/ l�, where the viscosity for low shear rates is in-
creased by more than a factor of 10. However, the fact that
there is shear thinning and that it depends on the ionic
strength is an interesting result, if we recall the fact that the
lubrication force in our simulation can be interpreted as a
velocity-dependent damping force, which becomes stronger
for higher relative velocities. Therefore, one would intu-
itively expect shear thickening.

Finally, the limitations of the DLVO theory have to be
taken into account. DLVO potentials are derived for dilute
suspensions and hence large particle distances. This is not
fulfilled in our case—and even less inside the clusters. There
are theoretical attempts that address the shortcomings of
DLVO theory: Explicit simulation of micro-ions �69�,
density- functional theory �70–72�, response theory �73–76�,
Poisson-Boltzmann cell models �77–79�, and full Poisson-
Boltzmann theory �80–83�, but they have other
disadvantages—most of them require a large computational
effort. For Poisson-Boltzmann cell models, one assumes ho-
mogeneously distributed colloidal particles, so that each of
them can be regarded as a representative single particle in a
Wigner-Seitz cell. Additionally, depending on the level
Poisson-Boltzmann theory is included, a mysterious phase
separation could be identified as an artifact of linearization
�79�. Full Poisson-Boltzmann theory would require the cal-
culation of the local potential, not only as done in our charge
regulation model in the beginning of the simulation, but for
the whole simulation box and in each time step. This would
in principle provide a better description of the real system,
but the computational effort would be much larger, making
simulations of several thousands of particles impossible. The
same applies to the approach of including the micro-ions
explicitly in the simulation. One could obtain three- �many-�
body interactions from full Poisson-Boltzmann theory and
try to include them as a lookup table in the simulation. How-
ever, one would have to decrease the system size to keep the
computational effort affordable. For our simulations we need
relatively simple pair potentials to keep the computational
costs within a limit. Nevertheless, the overall behavior can
be reproduced by the simulation on a semiquantitative level.
The reason for that might be the fact that in some of the
above-mentioned theoretical attempts �density-functional
theory and cell models�, DLVO-like potentials are obtained
with a renormalized charge and screening length. In our
charge regulation model, we merely adjust a renormalized
charge to the measurements of the � potential. This may be a
general explanation why DLVO potentials can often be used,
although the assumptions for DLVO theory are not fulfilled
�52,54,84–86�.

We have carried out simulations in the repulsive region of
the stability diagram as well. We find layers parallel to the
shear plane in analogy to Fig. 5�b�. In contrast to the sus-
pended regime, in the repulsive regime the layer structure is
present—at least locally, but orientationally disordered—

even if no shear is applied. If shear flow is present, the shear
plane marks one orientation that the layer structure adopts. In
some cases, for very low ionic strengths one can observe
shear bands so that the velocity gradient and thus the viscos-
ity vary strongly in the system. Again, in the experiment,
physical dimensions are much larger and on that length scale
the velocity profile might be assumed to be linear when
enough shear bands are in the system. The shear force and
hence the viscosity increase with respect to the suspended
regime, due to electrostatic repulsion. One can consider the
particles together with the interaction range as soft spheres
with an effective radius of the interaction range of the elec-
trostatic repulsion. This effective radius in our case can be
about 25% larger than the particle radius. Therefore, a tran-
sition to a repulsive structure already occurs in our systems
between 35% and 40% volume fraction. Because of the
smooth shape of the exponentially screened Coulomb poten-
tial, it is not a sharp glass transition as for hard spheres, but
smooth and shear-rate-dependent as well. In Fig. 8, we have
shown the dependence of the viscosity on the volume frac-
tion for pH=6 and I=0.3 mmol/ l. Starting at �=0.3, the
shear viscosity starts to increase and reaches a value one
decade larger beyond �=0.4.

VIII. SUMMARY AND OUTLOOK

We have shown how to relate DLVO potentials to the
conditions in a real aqueous suspension of Al2O3 particles.
The behavior of shear viscosity has been studied in experi-
ments and in simulations. We have found shear thinning due
to a layer formation on the microscopic scale in the case of a
suspension.

If a clustered system is sheared, clusters are broken up
into pieces by the imposed shear, which leads to a stronger
shear thinning than in the suspended case. Close to the bor-
der, we are able to reproduce the measured shear viscosity in
the simulation.

Deep in the clustered regime, we have found that our
particles form one big cluster in the system that can be bro-
ken up by the hydrodynamic forces of the shear flow. For
strongly clustered systems at low shear rate, which would be
the most interesting case for soil mechanics, there are strong
finite-size effects. One attempt to address this problem is to

FIG. 8. Viscosity vs volume fraction for the repulsive region
�pH=6 and I=0.3 mmol/ l�. The shear rate was �̇=100/s
�Pe=2.9�. The points are simulation results, the line is a guide to the
eye.
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increase the size of the simulated system. As we have shown
with our work, the computational effort increases to an ex-
tend that a parallelized simulation code would be necessary.
However, this might not be sufficient, since in both cases, for
low shear rates and for strongly attractive interactions, the
finite-size effects become stronger. Since in these simulations
a considerable amount of the computing time is consumed by
the particles inside a cluster, one could think of a more
coarse-grained description of the clusters. Nevertheless, in-
put data for such a model could be obtained using our
present simulation code. Depending on the model, one might
need information about the shear resistance of a single clus-
ter, depending on the cluster size and shape. This would be
very difficult to measure, but it could be calculated in a small
simulation using our combined MD and SRD algorithm.
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